Prenatal phthalate exposures and body mass index among 4 to 7 year old children: A pooled analysis

Jessie P. Buckley
University of North Carolina at Chapel Hill

PPTOX IV
October 28, 2014
Phthalates

• Low molecular weight
 – Adhesives, paints, personal care products (e.g., cosmetics, lotions, fragrances)

• High molecular weight
 – Plastics (e.g. food packaging, building materials, toys)

• All exposure routes

• Elimination half lives of less than 24 hours

• Ubiquitous exposure

Koch et al. Arch Toxicol 2005; Silva et al. EHP 2004

Di-(2-ethylhexyl) phthalate (DEHP)
Obesogen hypothesis

Early life phthalate exposures

- peroxisome proliferator-activated receptors (PPARs)
- thyroid hormones
- androgen activity

-> adipogenesis, insulin sensitivity, leptin
-> energy balance, metabolism
-> muscle and fat development

-> Obesity

Objective

To assess the relationship between prenatal phthalate exposures and BMI in early childhood
Challenge

• Limited power in birth cohorts with longitudinal follow-up

• Solution: Pooled analysis of three U.S. birth cohorts
 – Mount Sinai School of Medicine Children’s Environmental Health Center (MSSM), New York, NY
 – Columbia Center for Children’s Environmental Health (CCEH), New York, NY
 – Health Outcomes and Measures of the Environment Study (HOME), five Ohio counties

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MSSM</td>
<td>Enrollment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCEH</td>
<td>Enrollment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOME</td>
<td>Enrollment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Study sample

MSSM N = 404
CCEH N = 727
HOME N = 389

N = 1520

Exclusions:
- <32 weeks gestation or <1,500 grams
- Urinary creatinine < 10 mg/dL
- Urinary phthalate concentrations not measured during pregnancy

N = 1143

Restricted to children with measured weight and height collected at ≥1 follow-up visit occurring between 4 and 7 years of age

N = 707, 1416 visits
Phthalate metabolite concentrations
Outcomes

- Calculated age- and sex-standardized BMI percentiles and z-scores using CDC growth charts.

- Overweight or obese = age- and sex-standardized BMI percentile >85.

- Assessed BMI z-score as a continuous outcome.
Statistical analysis

• Bayesian modeling framework
 – Linear and logistic mixed effects regression models
 – Adjusted for a large set of potential confounders
 – Multiply imputed missing covariate data
 – Assessed heterogeneity by child’s sex
 – Multiple metabolite models

<table>
<thead>
<tr>
<th></th>
<th>MEP</th>
<th>MnBP</th>
<th>MiBP</th>
<th>MCPP</th>
<th>MBzP</th>
<th>ΣDEHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEP</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnBP</td>
<td>0.5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MiBP</td>
<td>0.4</td>
<td>0.8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP</td>
<td>0.4</td>
<td>0.7</td>
<td>0.6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBzP</td>
<td>0.5</td>
<td>0.7</td>
<td>0.7</td>
<td>0.6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ΣDEHP</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>
Characteristics by cohort, n (%)

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>MSSM</th>
<th>CCEH</th>
<th>HOME</th>
<th>Pooled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (N)</td>
<td>151</td>
<td>339</td>
<td>217</td>
<td>707</td>
</tr>
<tr>
<td>Maternal age at delivery (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 20</td>
<td>42</td>
<td>47</td>
<td>13</td>
<td>102</td>
</tr>
<tr>
<td>20–24</td>
<td>53</td>
<td>121</td>
<td>37</td>
<td>211</td>
</tr>
<tr>
<td>25–29</td>
<td>21</td>
<td>100</td>
<td>62</td>
<td>183</td>
</tr>
<tr>
<td>≥ 30</td>
<td>35</td>
<td>71</td>
<td>105</td>
<td>211</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic white</td>
<td>31</td>
<td>0</td>
<td>135</td>
<td>166</td>
</tr>
<tr>
<td>Non-Hispanic black</td>
<td>41</td>
<td>120</td>
<td>69</td>
<td>230</td>
</tr>
<tr>
<td>Hispanic</td>
<td>76</td>
<td>219</td>
<td>4</td>
<td>299</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>0</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Maternal education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><High school</td>
<td>34</td>
<td>124</td>
<td>20</td>
<td>178</td>
</tr>
<tr>
<td>High school or GED</td>
<td>34</td>
<td>126</td>
<td>27</td>
<td>187</td>
</tr>
<tr>
<td>Some college</td>
<td>45</td>
<td>74</td>
<td>64</td>
<td>183</td>
</tr>
<tr>
<td>≥ College degree</td>
<td>38</td>
<td>15</td>
<td>106</td>
<td>159</td>
</tr>
<tr>
<td>Mother worked during pregnancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (0)</td>
<td>92</td>
<td>199</td>
<td>181</td>
<td>472</td>
</tr>
<tr>
<td>Parity (multiparous)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 (0)</td>
<td>188</td>
<td>117</td>
<td>305</td>
<td></td>
</tr>
<tr>
<td>Maternal smoking during pregnancy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 (17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Odds ratio per SD increase in natural log phthalate metabolite concentrations estimated in a multiple metabolite logistic mixed effects model, adjusted for cohort; urine dilution and collection date; maternal race/ethnicity, age, education, work status, parity, height, and pre-pregnancy body mass index; gestational weight gain; gestational tobacco exposure; breastfeeding; child’s sex; and child’s age (months) at follow-up
Overweight/obesity by child’s sex

Odds ratio per SD increase in natural log phthalate metabolite concentrations estimated in a multiple metabolite logistic mixed effects model, adjusted for cohort; urine dilution and collection date; maternal race/ethnicity, age, education, work status, parity, height, and pre-pregnancy body mass index; gestational weight gain; gestational tobacco exposure; breastfeeding; and child’s age (months) at follow-up.
Beta per SD increase in natural log phthalate metabolite concentrations estimated in a multiple metabolite linear mixed effects model, adjusted for cohort; urine dilution and collection date; maternal race/ethnicity, age, education, work status, parity, height, and pre-pregnancy body mass index; gestational weight gain; gestational tobacco exposure; breastfeeding; child’s sex; and child’s age (months) at follow-up.
Beta per SD increase in natural log phthalate metabolite concentrations estimated in a multiple metabolite linear mixed effects model, adjusted for cohort; urine dilution and collection date; maternal race/ethnicity, age, education, work status, parity, height, and pre-pregnancy body mass index; gestational weight gain; gestational tobacco exposure; breastfeeding; and child’s age (months) at follow-up.
Conclusions

• MCPP may be an environmental obesogen
 – Associated with overweight/obesity but not BMI z-scores
 – Confounding by diet?
 – Associated with increased odds of high cord blood leptin levels in male infants (Ashley-Martin et al. Environ Health in press)

• MEP associated with lower BMI z-scores in girls
 – No evidence of obesogenic effects, may interfere with other processes related to physical development
Future directions

• Other susceptible windows
 – Phthalate exposures during childhood
 – Body size at other developmental stages (e.g., puberty)

• Co-exposures to other environmental obesogens
Acknowledgements

Collaborators
• Stephanie Engel
• Joseph Braun
• Robin Whyatt
• Julie Daniels
• Michelle Mendez
• David Richardson
• Antonia Calafat
• Mary Wolff
• Bruce Lanphear
• Amy Herring
• Andrew Rundle

Grant Support
• Current study: NIEHS (R21 ES021700, T32 ES007018) and NICHD (T32 HD052468-05)
• MSSM: NIEHS (ES009584), EPA (R827039 and RD831711), ATSDR, and The New York Community Trust
• HOME: NIEHS (P30ES10126) and NIEHS/EPA (PO1 ES11261)

Contact Information
• jessbuck@unc.edu

Many thanks to the women and children who participated