Stem Cells as Targets that lead to Increased Cancer Susceptibility

Gail S. Prins
University of Illinois at Chicago
Is the risk of Prostate Cancer influenced by fetal or perinatal estrogen exposures?

- Maternal
- Pharmaceutical (DES)
- EDCs
Inappropriate estrogenic exposures (dosing, timing, type) can reprogram the prostate gland and increase disease risk with aging.
Prostate Epithelial Cell Hierarchy

- Sox2
- ABCG2
- CD 44, 117, 133
- CD49fhi, Trop2

Stem Cell
- self-renewal

Bipotent Progenitor
- transit amplification

Unipotent Basal Progenitor
- symmetric commitment

- **Basal**
 - CK5/15+
 - P63+

- **Luminal**
 - CK8/18+
 - AR+
 - Nkx3.1+
 - Hoxb13+
 - PSA

- **Neuroendocrine**
 - Chromogranin A
 - Synaptophysin

E2, EDCs

CD49f
- Symmetric renewal
- Asymmetric division
- Symmetric commitment
Primary culture of normal (i.e. disease-free) prostate epithelial cells (PrEC)

< 0.2 % form prostaspheres (PS) through self-renewal

3-D culture in Matrigel

Prostate stem cell markers

Human Prostaspheres express ERs

Estradiol stimulates stem-progenitor cell self-renewal

Day 7 PS

E$_2$ ↑ prostasphere # and size

40-80µm

>80µm

PS number (fold changes)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

C 1 10 100 1000

E2 (nM)

C 1 10 100 1000

E2 (nM)

* † **

C

E2

(nM)

1 10 100 1000

CD49f-APC

control

1 nM E2

Trop2 - AF488

Trop2 - AF488

Trop2 - AF488

Fold change

0.0 0.4 0.8 1.2 1.6

C 1 10 100

E2 (nM)
Estradiol maintains prostasphere stemness

Day 7 PS

E$_2$ ↑ PS stemness genes

*P<0.05 vs control
N=4

Fold changes
Bisphenol A stimulates prostate stem-progenitor cells

Day 7 PS

BPA ↑ PS # and size

BPA ↑ PS stemness genes

Low-dose BPA phenocopies most of E2 effects on prostate stem-progenitor cells
E₂ signaling pathways in human prostaspheres

Classic genomic signaling:
Transient ERE-tk-luciferase reporter in **Day 5 PS**
+16 hr E₂ or BPA

Rapid Non-genomic signaling:

Day 7 PS:

- **Bisphenol A**
 - 10 nM
 - Control, 15 min, 30 min, 60 min, 6 hrs

- **Estradiol**
 - 10 nM
 - Control, 15 min, 30 min, 60 min, 6 hrs

- **pAKT**
 - ser473

- **AKT**

- **pERK**
 - thr202/tyr204

- **ERK**

Graphs:

- Relative luciferase activity
- Log(10⁻³ pERK / total ER)

Authors: Cheryl Walker
Estrogens act through both nuclear and membrane-initiated receptor signaling pathways in prostate stem-progenitor cells.
In vivo Chimeric Model of Normal Humanized Prostate Tissue

- embryonic rat
- UG mesenchyme

+ 1 month

PSA, DAPI
Estrogen-induced prostate carcinogenesis

1 month

at 1 month:
\(T+E_2 \) pellets
- 25 mg T
- 2.5 mg \(E_2 \)

1-4 months

embryonic rat
UG mesenchyme

Open biopsy
Estradiol Drives Adenocarcinoma in Human Prostate Epithelium

1 month T+E₂
Hyperplasia

2 month T+E₂
HG-PIN

2 - 4 month T+E₂
PCa

PIN Incidence by 4 mo: 31%

Prostate Cancer Incidence: 11%

Hu et al, Endocrinology 152 :2150, 2011
Developmental BPA Exposure and PCa Susceptibility

BPA (200 nM)
- 0-7 days
- 1x/day
- 0-2 wks

Low-dose: (100 or 250 µg/kg BW)

<table>
<thead>
<tr>
<th>Treatment (µg BPA/kg BW)</th>
<th>Free BPA (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vehicle</td>
<td>BLD</td>
</tr>
<tr>
<td>100</td>
<td>0.39 ± 0.17</td>
</tr>
<tr>
<td>250</td>
<td>1.35 ± 0.29</td>
</tr>
</tbody>
</table>

Embryonic rat UG mesenchyme +

Day 7 Serum BPA levels

T+E pellets 1-4 mo

Blinded Pathology Dx

Developmental BPA Increases Human PCa Susceptibility

Dx at 2-4 months T+E

<table>
<thead>
<tr>
<th></th>
<th>Oil</th>
<th>BPA in vivo 100 µg/kg</th>
<th>BPA in vivo 250 µg/kg</th>
<th>BPA in vitro + in vivo 200 nM, 250 µg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>38</td>
<td>36</td>
<td>27</td>
<td>42</td>
</tr>
<tr>
<td>Normal</td>
<td>10 (26%)</td>
<td>4 (11%)</td>
<td>0 (0%)*</td>
<td>4 (10%)</td>
</tr>
<tr>
<td>Abnormal: Benign Hyperplasia, SQM</td>
<td>28 (74%)</td>
<td>32 (89%)</td>
<td>27 (100%)*</td>
<td>38 (90%)**</td>
</tr>
<tr>
<td>Abnormal: Cancerous HG-PIN & PCa</td>
<td>5 (13%)</td>
<td>12 (36%) *</td>
<td>9 (33%)**</td>
<td>19 (45%)**</td>
</tr>
</tbody>
</table>

*P<0.05, **P<0.01 vs oil; Note: Some specimens contain multiple diagnoses.

HG-PIN

PCa

Prins et al, Endocrinology 155:805, 2014
Conclusions: Bisphenol A and Human Prostate Cancer

Direct *in vivo* evidence that developmental exposure to bisphenol A (BPA) at levels found in humans *increases* cancer susceptibility in the *human prostate* epithelium.

Lobaccaro JM, Trousson A. *Endocrinology* 155, 2014
Acknowledgements

- Wen-yang Hu, MD, PhD
- Dan-ping (Grace) Hu, MD
- Shyama Majumdar, PhD
- Tim Gauntner
- Esther Calderon-Gierszal, PhD
- Lin Han, PhD
- Shu-Hua Ye, MD
- Lynn Birch, MS
- Lishi Xie, PhD, MD
- Guang-bin Shi, PhD

- Andre Balla-Kajdacsy, MD, PhD
- Shuk-mei Ho, PhD
- Cheryl Walker, PhD

NIH:
- ES018758
- ES015584
- CA172220
- DK40890