Endocrinology Journal Article

Decreasing miR-433-3p Activity in the Osteoblast Lineage Blunts Glucocorticoid-Mediated Bone Loss

March 11, 2025
 

Prachi Thakore, Sangita Karki, Henry C Hrdlicka, John Garcia-Munoz, Renata C Pereira, Anne M Delany
Endocrinology, Volume 166, Issue 2, February 2025, bqaf008
https://doi.org/10.1210/endocr/bqaf008

Abstract

Glucocorticoid excess causes bone loss due to decreased bone formation and increased bone resorption; miR-433-3p is a microRNA (miRNA) that negatively regulates bone formation in male mice by targeting Runx2 as well as RNAs involved in Wnt, protein kinase A, and endogenous glucocorticoid signaling. To examine the impact of miR-433-3p on glucocorticoid-mediated bone loss, transgenic mice expressing a miR-433-3p tough decoy inhibitor in the osteoblast lineage were administered prednisolone via slow-release pellets. Bone loss was greater in control mice treated with prednisolone compared with miR-433-3p tough decoy mice due to higher osteoclast activity in the controls. In whole femurs, Rankl was significantly higher in prednisolone-treated controls compared with miR-433-3p tough decoy mice. Surprisingly, negative regulators of Wnt signaling Sost and Dkk1 were higher in miR-433-3p tough decoy mice and were unaffected by prednisolone. Luciferase- 3′-untranslated region reporter assays demonstrated that Sost is a novel miR-433-3p target, whereas Dkk1 is a previously validated miR-433-3p target. miR-433-3p levels are lower in matrix-synthesizing osteoblasts than in more osteocytic cells; thus the impact of miR-433-3p on the osteoblast lineage may be dependent on cell context: it is a negative regulator in matrix-depositing osteoblasts by targeting RNAs important for differentiation and function but a positive regulator in osteocytes, due to its ability to target prominently expressed negative regulators of Wnt signaling, Sost and Dkk1. The mechanisms by which miR-433-3p indirectly regulates glucocorticoid-mediated osteoclastogenesis remain unknown. However, we speculate that this regulation may be mediated by miR-433-3p activity in osteocytes, which play an important role in controlling osteoclastogenesis.

Read the article

 

You may also like...

Publishing Benefits

Author Resource Center

We provide our journal authors with a variety of resources for increasing the discoverability and citation of their published work. Use these tools and tips to broaden the impact of your article.
Publishing Benefits

Author Resource Center

We provide our journal authors with a variety of resources for increasing the discoverability and citation of their published work. Use these tools and tips to broaden the impact of your article.

Thematic Issue

Latest Thematic Issue

immuno-endocrinology
Read our special collections of Endocrine Society journal articles, curated by topic, Altmetric Attention Scores, and Featured Article designations.

Read our special collections of Endocrine Society journal articles, curated by topic, Altmetric Attention Scores, and Featured Article designations.

Back to top

Who We Are

For 100 years, the Endocrine Society has been at the forefront of hormone science and public health. Read about our history and how we continue to serve the endocrine community.