A Randomized Crossover Study
Kaitlin M Love, Linda A Jahn, Lee M Hartline, Kevin W Aylor, Zhenqi Liu
The Journal of Clinical Endocrinology & Metabolism, Volume 109, Issue 4, April 2024, Pages 1041–1050
https://doi.org/10.1210/clinem/dgad656
Vascular insulin resistance is commonly observed in obesity and diabetes; yet, insulin action across the vascular tree and the relationship between insulin responses at different vascular locations remains incompletely defined.
To elucidate the impact of elevated free fatty acids (FFAs) on insulin action across the arterial tree and define the relationship among insulin actions in the different arterial segments.
This randomized crossover study assigned healthy lean adults to 2 separate admissions with euglycemic insulin clamp superimposed for the final 120 minutes of 5-hour lipid or matched-volume saline infusion. Vascular measures including peripheral and central arterial blood pressure, brachial artery flow-mediated dilation (FMD), carotid femoral pulse wave velocity (cfPWV), augmentation index (AIx), pulse wave separation analysis, subendocardial viability ratio (SEVR), and skeletal and cardiac muscle microvascular perfusion were determined before and after insulin clamp. Insulin-mediated whole body glucose disposal was calculated.
Insulin enhanced FMD, AIx, reflection magnitude, and cardiac and skeletal muscle microvascular perfusion. Elevation of plasma FFA concentrations to the levels seen in the postabsorptive state in people with insulin resistance suppressed SEVR, blunted insulin-induced increases in FMD and cardiac and skeletal muscle microvascular blood volume, and lowered insulin's ability to reduce AIx and reflection magnitude. In multivariate regression, insulin-mediated muscle microvascular perfusion was independently associated with insulin-mediated FMD and cfPWV.
Clinically relevant elevation of plasma FFA concentrations induces pan-arterial insulin resistance, the vascular insulin resistance outcomes are interconnected, and insulin-mediated muscle microvascular perfusion associates with cardiovascular disease predictors. Our data provide biologic plausibility whereby a causative relationship between FFAs and cardiovascular disease could exist, and suggest that further attention to interventions that block FFA-mediated vascular insulin resistance may be warranted.
We provide our journal authors with a variety of resources for increasing the discoverability and citation of their published work. Use these tools and tips to broaden the impact of your article.
Read our special collections of Endocrine Society journal articles, curated by topic, Altmetric Attention Scores, and Featured Article designations.